
Let tests drive or
let Dijkstra derive?

Sander Kooijmans

Clean Code Days 2016



Apollo



Dionysos



Cygnus



Who is Sander Kooijmans?

www.gogognome.nl

That’s another cook



Why this presentation?

You are not a serious programmer if you do not use TDD

The only way to write correct programs is using TDD

Applying TDD and transformations may be a formal proof of 
correctness (still to be proven)

TDD gives an empirical evidence for correctness (April 2016)



What to expect?
My experiences with tests and TDD

Uncle Bob’s solution to the primes kata

How to prove algorithms are correct

Deriving a solution for the primes kata (Dijkstra style)

My conclusions



My experience with TDD



My experience with TDD



My experience with tests



My experience with tests



My experience with tests



My experience with tests

@Test

public void testCountOccurrences() {

assertEquals(0, countNrOccurrences("A", ""));

assertEquals(0, countNrOccurrences("A", “BC"));

assertEquals(1, countNrOccurrences("A", "ABC"));

assertEquals(3, countNrOccurrences("A", “BACABAB"));

}



My experience with tests



My experience with tests



The Prime Factors Kata by Uncle Bob

140 = 14 * 10

140 = 7 * 20

140 = 2 * 2 * 5 * 7



The Prime Factors Kata by Uncle Bob
package primeFactors;

import static primeFactors.PrimeFactors.generate;

import junit.framework.TestCase;

import java.util.*;

public class PrimeFactorsTest extends TestCase {

private List<Integer> list(int... ints) {

List<Integer> list = new ArrayList<Integer>();

for (int i : ints)

list.add(i);

return list;

}

public void testOne() throws Exception {

assertEquals(list(),generate(1));

}

public void testTwo() throws Exception {

assertEquals(list(2),generate(2));

}

public void testThree() throws Exception {

assertEquals(list(3),generate(3));

}

public void testFour() throws Exception {

assertEquals(list(2,2),generate(4));

}

public void testSix() throws Exception {

assertEquals(list(2,3),generate(6));

}

public void testEight() throws Exception {

assertEquals(list(2,2,2),generate(8));  

}

public void testNine() throws Exception {

assertEquals(list(3,3),generate(9));

}

}

package primeFactors;

import java.util.*;

public class PrimeFactors {

public static List<Integer> generate(int n) {

List<Integer> primes = new ArrayList<Integer>();

for (int candidate = 2; n > 1; candidate++)

for (; n%candidate == 0; n/=candidate)

primes.add(candidate);

return primes;

}

}

http://butunclebob.com/files/downloads/Prime%20Factors%20Kata.ppt



Edsger Wybe Dijkstra (1930-2002)



Edsger Wybe Dijkstra



Predicates

All variables of your program

true or false

int a=4; int b=8;

After execution these predicates hold:
P(a) ≡ a == 4

Q(a,b) ≡ a < b

R(a,b) ≡ 2*a == b

For brevity we write 

R ≡ 2*a == b



Hoare triple
The Hoare triple {Pre} S {Post} means:

When Pre holds and  S is executed 

then if S terminates Post holds

In the Java code samples I use this notation:
// Pre

S

// Post



Assignment

{Pre} x = E {Post} is equivalent to Pre ⇒ Post(x:=E)

Let us prove

{x == 40} x = x+2 {x == 42}

(x == 42)(x:=x+2)

≡ { substitution }

x+2 == 42

≡ { arithmetic }

x == 40



Assignment

{Pre} x = E {Post} is equivalent to Pre ⇒ Post(x:=E)

Let us prove

{x == 5} x = x+3 {x > 7}

(x > 7)(x:=x+3)

≡ { substitution }

x+3 > 7

≡ { calculus }

x > 4

⇐ { precondition }

x == 5



If-statement
{Pre} if (B) S else T {Post} is equivalent to: 

{Pre && B} S {Post} and {Pre && !B} T {Post}

Let us prove

{true} if (y>=x) u=y else u=x {u == max(x,y)}



While-loop
{Inv} while (B) S {Post} follows from

{Inv && B} S {Inv}

Inv && !B ⇒ Post

Provided that the loop terminates

Inv is called an invariant



Termination of a while-loop

Termination is proved using a bound function
A bound function decreases with at least one each iteration

The bound function is bounded from below



While-loop: proving an algorithm to calculate 2^n

// pre: n >= 0

// post: p == 2^n



While-loop: proving an algorithm to calculate 2^n

// pre: n >= 0

int p=1; int i=0;

while (i != n) {

p = 2*p; i = i+1; 

}

// post: p == 2^n

p i 2^i

1 0 1

2 1 2

4 2 4

8 3 8



While-loop: proving an algorithm to calculate 2^n

// pre: n >= 0

int p=1; int i=0;

// invariant: p == 2^i

// bound function: n-i >= 0

while (i != n) {

p = 2*p; i = i+1; 

}

// post: p == 2^n

p i 2^i

1 0 1

2 1 2

4 2 4

8 3 8



Edsger Wybe Dijkstra

program derivation: 

to “develop proof and program hand in hand”



Deriving a solution to the Prime Factors Kata

140 = 14 * 10

140 = 7 * 20

140 = 2 * 2 * 5 * 7



Deriving a solution to the Prime Factors Kata
public static List<Integer> generate(int q) {

List<Integer> factors = new ArrayList<Integer>();

// q >= 1

“do the work”;

// factors contains all prime factors of q

return factors;

}



Deriving a solution to the Prime Factors Kata

n factors

2 * 2 * 5 * 7 []

2 * 2 * 5 [7]

2 * 5 [2, 7]

5 [2, 2, 7]

1 [2, 2, 5, 7]

Invariant 1: factors contains only primes

Invariant 2: n * "product of factors" == q

Bound function: n >= 1

q == 140



Deriving a solution to the Prime Factors Kata

// q >= 1

int n = q;

while (n != 1) {

int prime = “a prime factor of n”;

n = n / prime;

factors.add(prime);

}

// n == 1 and invariants imply 

// that factors contains all prime factors of q.

Invariant 1: factors contains only primes

Invariant 2: n * "product of factors" == q

Bound function: n >= 1



Deriving a solution to the Prime Factors Kata

n factors c

2 * 2 * 3 * 3 * 5 [] 2

3 * 3 * 5 [2, 2] 3

5 [2, 2, 3, 3] 4, 5

1 [2, 2, 3, 3, 5] 6, 7, 8, …

Invariant 1: factors contains only primes

Invariant 2: n * "product of factors" == q

Invariant 3: n has no prime factors less than c

q == 180



// q >= 1

int n = q; int c = 2;

while (n != 1) {

“if c is prime then move all occurrences of c from n to factors”;

// c is not a prime factor of n

c++;

}

// n == 1 and invariants imply that factors contains all prime factors of q

Invariant 1: factors contains only primes

Invariant 2: n * "product of factors" == q

Invariant 3: n has no prime factors less than c

Bound function: q + 1 – c >= 0

Deriving a solution to the Prime Factors Kata



// q >= 1

int n = q; int c = 2;

while (n != 1) {

while (n % c == 0 && “c is prime”) {

n = n / c;

factors.add(c);

}

// c is not a factor of n

c++;

}

// n == 1 and invariants imply that factors contains all prime factors of q.

Invariant 1: factors contains only primes

Invariant 2: n * "product of factors" == q

Invariant 3: n has no prime factors less than c

Bound function: q + n – c >= 0

Deriving a solution to the Prime Factors Kata



// q >= 1

int n = q; int c = 2;

while (n != 1) {

while (n % c == 0) {

n = n / c;

factors.add(c);

}

// c is not a factor of n

c++;

}

// n == 1 and invariants imply that factors contains all prime factors of q.

Invariant 1: factors contains only primes

Invariant 2: n * "product of factors" == q

Invariant 3: n has no prime factors less than c

Bound function: q + n – c >= 0

If c is not prime,

then c == p1 * … * pm
where p1 … pm are primes.

Thus p1 < c and p1 is a prime factor of q.

This contradicts invariant 3. 

Therefore c is prime.

Deriving a solution to the Prime Factors Kata



package primeFactors;

import java.util.*;

public class PrimeFactors {

public static List<Integer> generate(int n) {

List<Integer> primes = new ArrayList<Integer>();

for (int candidate = 2; n > 1; candidate++)

for (; n%candidate == 0; n/=candidate)

primes.add(candidate);

return primes;

}

}

Deriving a solution to the Prime Factors Kata



Conclusions

Test-Driven Design
No guarantee that TDD leads to correct code

Empirical proof

Tests are repeatable

Tests run fast

Program derivation (Dijkstra style)
Mathematical proof of correctness

Deriving and proving can go hand in hand

Time consuming

What if proof is wrong?



Conclusions

TDD and formal proofs are tools, not goals

The goal is correct code covered by tests



Questions?

www.hightechict.nl

sander.kooijmans@hightechict.nl

www.gogognome.nl


